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Exercise 7.1 Tinder Don*na Juan*a.

You registered on Tinder and you got a lot of matches (you may assume that you have an endless
amount of matches). Now, you would like to create a schedule for your dates. You don’t date more than
one person per day. Further, a�er having a date you always tell your best friend how it went before
going to your next date.

You tell your best friend about your success on Tinder and that you are trying to �nd a nice schedule for
your dates. Your best friend gives you a listK of days on which he/she is not available, and challenges
you to enumerate all possible date-schedules for the next T days. A schedule consists of T entries,
where the i-th entry contains whether you have a date on this day or not. Note that you always need
to have a day in which your best friend is available between two of your dates.

Use dynamic programming to determine the number of di�erent date-schedules under these cons-
traints. In an exam, we would give full points for an O(T ) solution, but you may get partial points for
larger runtimes like O(T · |K|).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table:



De�nition of the DP table:

Computation of an entry:

Calculation order:

Extracting the solution:

Running time:

Exercise 7.2 Longest Snake.

You are given a game-board consisting of hexagonal �elds F1, . . . , Fn. �e �elds contain natural num-
bers v1, . . . , vn ∈ N. Two �elds are neighbors if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j ∈ {1, . . . , k − 1}, Fij and Fij+1 are neighbors and their
values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each �eld. �at is, to obtain the neighbors of a �eld Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.
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Figure 1: Example of a longest snake.

Hint: Your algorithm should solve this problem usingO(n log n) time, where n is the number of hexa-
gonal �elds.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table:

De�nition of the DP table:

Computation of an entry:

Calculation order:

Extracting the solution:
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Running time:

b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in Θ-notation in terms of n.

c)∗ Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Exercise 7.3 Making change with few coins (2 points).

Suppose that you have (in�nitely many) coins of di�erent values x1, . . . , xn ∈ N, and youwant to make
them sum to a given amount with as few coins as possible (where it is allowed to use several coins of
the same value). More formally, for some amount a ∈ N, you want to determine the minimal number
of coins k that are needed so that their values sum to a (if it is not possible to get amount a with the
given coin values, we will say that k = ∞). For example, if you have coins of values 3 and 7, then if
a = 20 we can get this amount with k = 4 coins (and it’s not possible to get it with fewer coins), while
if a = 8 then k =∞ since it’s impossible to make such coins sum to 8.

Use dynamic programming to compute the minimal number of coins needed to get amount a. Your
solution should have runtime O(an).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table:

De�nition of the DP table:

Computation of an entry:
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Calculation order:

Extracting the solution:

Running time:

Exercise 7.4 Integer partitions (1 point).

An integer partition of n ∈ Z≥0 is a way of writing n as a sum of positive integers. For example, the
integer partitions of 3 are: 3, 2 + 1 and 1 + 1 + 1. �e order of the summands does not ma�er, i.e., 2 + 1
and 1 + 2 are the same partition of 3.

�e partition function p(n) computes the number of integer partitions of n. For example, p(0) = 1,
p(1) = 1, p(2) = 2, p(3) = 3 and p(4) = 5. Despite looking seemingly simple, no closed form for the
partition function p(n) is known. However, it is possible to compute p(n) in quadratic time and linear
memory by dynamic programming. Your task is to derive this algorithm.

Hint: Develop �rst a solution that needs quadratic time and quadratic memory, then think about how to
save memory. Such a solution (with quadratic memory) would still give partial points in an exam.

Dimensions of the DP table:

De�nition of the DP table:

Computation of an entry:

Calculation order:

Extracting the solution:

Running time:
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